Local Prediction of Chaotic Time Series Based on Polynomial Coefficient Autoregressive Model
نویسندگان
چکیده
منابع مشابه
Chaotic Time Series Prediction Based on Local-Region Multi-steps Forecasting Model
Large computational quantity and cumulative error are main shortcomings of addweighted one-rank local-region single-step method for multi-steps prediction of chaotic time series. A local-region multi-steps forecasting model based on phase-space reconstruction is presented for chaotic time series prediction, including add-weighted one-rank local-region multisteps forecasting model and RBF neural...
متن کاملNear–Integrated Random Coefficient Autoregressive Time Series
We determine the limiting behavior of near–integrated first–order random coefficient autoregressive RCA(1) time series. It is shown that the asymptotics of the finite dimensional distributions crucially depends on how the critical value 1 is approached, which determines whether the process is near–stationary, has a unit–root or is mildly explosive. In a second part, we derive the limit distribu...
متن کاملchaotic time series prediction by auto fuzzy regression model
since the pioneering work of zadeh, fuzzy set theory has been applied to amyriad of areas. song and chissom introduced the concept of fuzzy time series andapplied some methods to the enrolments of the university of alabama. thereafter weapply fuzzy techniques for system identification and apply statistical techniques tomodelling system. an automatic methodology framework that combines fuzzytech...
متن کاملstudy of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
New prediction of chaotic time series based on local Lyapunov exponent∗
A new method of predicting chaotic time series is presented based on a local Lyapunov exponent, by quantitatively measuring the exponential rate of separation or attraction of two infinitely close trajectories in state space. After reconstructing state space from one-dimensional chaotic time series, neighboring multiple-state vectors of the predicting point are selected to deduce the prediction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2015
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2015/901807